

Comparing Two Population Standard deviations

$$\frac{Sample 1}{S_1} | \begin{array}{c} Sample 2 \\ S_2 \\ S_1 \\ S_2 \\ N_1 \\ N_2 \\ N_1 \\$$

Consider the chart below $\frac{Sample 1}{S_1 = 8} | S_2 = 5$ $\pi_1 = 10 | \pi_2 = 7$ $\frac{S_1 = 8}{S_2 = 5} | S_2 = 5$ $\pi_1 = 10 | \pi_2 = 7$ $\frac{S_1 = 10}{S_2 = 7} | S_2 = \frac{S_1^2}{S_2^2} | S_1 = \frac{S_1^2}{S_2^2} | S_2 = \frac{S_1^2}{S_2^2} | S_2 = \frac{S_1^2}{S_2^2} | S_1 = \frac{S_1^2}{S_1^2} | S_1 = \frac{S_1^2}{S_1$ $H_0: \sigma_1 = \sigma_2$ claim STAT TESTS 2-SampFTest H1: 07 + 02 TTT Inpt: ISTATS CTS F=2.56 P-Value P=.265 51-8 N1=10 52=5 N2=7 0, +02 Calculate Using P-Value only P-Value > & Ho Valid Valid Claim H1 invalid Faul-to-reject the daim

Exam 1:
$$n=8$$
 S=10
Exam 2: $n=12$ S=15
Use $\alpha = .1$ to test the
Claim that two Population
standard deviations are
not equal.
CTS $F = \frac{S_1^2}{S_2^2} = \frac{15^2}{10^2} = 2.25 \vee$
 $2-Samp F Test$
 $CTS F = 2.25$
 $P = Value method only:$
 $P = Value P = .281$
 $P = Value N = 12 - 12 = 11$
 $Ddf = 8 - 1 = 7$
 $P = Value Method Only:$
 $P = Value P = .281$
 $P = Value N = 10$
 $P = Value Method N = 12 - 12 = 11$
 $P = Value Method Only:$
 $P = Value P = .281$
 $P = Value N = 10$
 $P = Value Method N = 10$
 $P = Value P = .281$
 $P = Value N = 10$
 $P = Value N = 10$
 $P = Value N = 10$
 $P = Value P = .281$

I randomly selected 10 Semale Students, and standard deviation of their ages was Females: m=10, S=18 18 XVS. I also randomly selected 15 male students, and Standard deviation of their ages was Males: N=15, S=4 4 Yrs. Test the claim that two pop. standard no a -> USC .05 deviations are equal. Females | Males Ndf=10-1=9 Ho: 07 = 02 Chaim n1=10 n2=15 Ddf=15-1=14 H1: 0, +02 TTT S1=18 S2=4 S1)S2 CTS $F = \frac{S_1^2}{S_2^2}$ $=\frac{18^2}{4^2}=20.25_{\vee}$ P-value < x CTS F = 20.25 3×10-6 .05 0.000003 <.05 P-Value P= 3.05 ×10 Ho invalid-p Invalid Chaim 2-SampFTest H1 valid Reject the claim

Comparing at least 3 population means:
Ho:
$$M_1 = M_2 = M_3 = \dots = M_K$$

H1: At least one mean is different. RTT
 $K \rightarrow \pm oS$ groups $NdS = K-1$
 $n \rightarrow Total$ Sample Size $DdS = n-K$
CTS F = \Rightarrow STAT TESTS ANOVA(L1,L2,
P-Value P= L3,...
Use Testing Chart, Name of the method
and P-Value method Analysis of Variance
to proceed.

Mt. SAC L Chaffey ELAC K=3 23 28 19 25 **a6** 32 N=6+7+5=18 40 35 40 45 34 32 48 28 20 Ndf=k-1=2 35 18 30 D45= n-K= 15 Use α =.02 to test the claim ELAC+LI that all pop. means are equal. Mt.SAC->L2 Chaffer + L3 $H_0: M_1 = M_2 = M_3$ claim H1: At least one mean is different. RTT STAT TESTS (ANOVA L1, L2, L3 Enter) CTS F = .071 2nd 1 znd 2 2nd 3 P-Value P= .931 => Ho Valid -> Valid claim P-Value > 02 H1 invalid (FTR the) .02 .931 Claim If we choose a= .932, then claim

I randomly selected exams show 4 different
classes Here are the Scores:
Morning Class ASternoon class Evening class Weekend
78 85 93 88 95 62 74 65 76 70
68 100 80 75 80 100 86 68 80 90 70 90 94 50 55
K=4 NdS=K-1=3 Factor
K=4 $n=8+5+6+6=25$ $\rightarrow NdS=K-1=3$ Factor DdS=n-K=21 Error
use (x=.1) to test the claim that not all
Use (0(=01) to rest the come
Pop. means are the Same.
$H_{0}: M_{1} = M_{2} = M_{3} = M_{4}$
H1: At least one Pop. mean is different. PTT
Morning -> L1 STAT TESTS ANOVA(L1,L2,L3,L4
ASternoon -> L2 -> CTS F=2.922 Enter
Evening -> L3 P=value P= .058
weekend -> LY P-value Method Only:
to reject the claim P-value (or Ho invalue)
P volue Va 058 11 H1 Valla
.058 > ~ Valid Claim => FTR The Claim
we need a to be
.05,.04, .03,.02, or .01
A NOVA does not tell US which mean is dissevent.